检索增强生成(Retrieval Augmented Generation,RAG)是一种强大的工具,它通过将企业外部知识整合到生成过程中,增强了大语言模型(LLM)的性能。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

RAG本质上是通过工程化手段,解决LLM知识更新困难的问题。其核心手段是利用外挂于LLM的知识数据库(通常使用向量数据库)存储未在训练数据集中出现的新数据、领域数据等。通常而言,RAG将知识问答分成三个阶段:索引、知识检索和基于内容的问答。

企业中使用RAG的主要目的是增强大模型,为大模型提供能力提升,目前主要是以下几方面:

  • a) 减少大模型在回答问题时的幻觉问题
  • b) 让大模型的回答可以附带相关的来源和参考
  • c) 消除使用元数据注释文档的需要

我给大家准备了一份全套的《AI大模型零基础入门+进阶学习资源包》,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

RAG的7大关键组成部分

接下来我们一起来看看组成RAG的7大关键组成部分。

第一、自定义知识库(Custom Knowledge)

定制知识库是指一系列紧密关联且始终保持更新的知识集合,它构成了 RAG 的核心基础。这个知识库可以表现为一个结构化的数据库形态(比如:MySQL),也可以表现为一套非结构化的文档体系(比如:文件、图图片、音频、视频等),甚至可能是两者兼具的综合形式。

第二、分块处理(Chunking)

分块技术是指将大规模的输入文本有策略地拆解为若干个较小、更易管理的片段(Chunk)的过程。这一过程旨在确保所有文本内容均能适应嵌入模型所限定的输入尺寸,同时也有助于显著提升检索效率。

实施一种明智且高效的分块策略,在优化知识处理流程方面具有关键作用,能够极大地增强您的 RAG 系统的性能与响应能力。

第三、嵌入模型(Embedding Model)

一种将多模态数据(文本、图片、音频等)表示为数值向量的技术,可以输入到机器学习模型中。

嵌入模型负责将多模态数据转换成这些向量。

第四、向量数据库( Vector Databases)

一系列预先计算的文本数据向量表示,用于快速检索和相似性搜索,具有SQL CRUD 操作、元数据过滤和水平扩展等功能。

第五、用户聊天界面(User Chat Interface)

一个用户友好的界面,允许用户与 RAG 系统互动,提供输入查询并接收输出。

查询转换为嵌入向量,用于从向量数据库检索相关上下文知识!


我给大家准备了一份全套的《AI大模型零基础入门+进阶学习资源包》,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

第六、查询引擎(Query Engine)

查询引擎获取查询字符串,使用它来获取相关上下文,然后将两者一起作为提示词发送给 LLM 以生成最终的自然语言响应。这里使用的 LLM 是Llama-3。

Llama 3是Meta股份有限公司开发的一系列模型,是最先进的新型模型,有8B和70B参数大小(预先训练或指导调整)。Llama3模型是用15T+(超过15万亿)tokens和800亿至700亿参数进行预训练和微调的,这使其成为强大的开源模型之一。这是对Llama2模型的高度改进。

它在本地运行,这要归功于 Ollama。最终响应将在用户界面上显示。

第七、提示词模板(Prompt Template)

为 RAG 系统生成合适提示词的过程,可以是用户查询和自定义知识库的组合。

这作为输入给 LLM,生成最终的回复。

探索合适的场景

企业知识管理领域有句话,叫“80%的知识管理项目通常会失败”。失败的主要原因,通常会卡在虽然建好了知识库,但知识无法与业务应用结合,产生实际业务价值。一句话总结,知识库和业务场景,是割裂的。

RAG的方法是首先确定应用场景,如搜索、问答、推荐、考试等,然后根据这些场景确定需要的知识,接着考虑如何收集、处理和运营这些知识。这种方法从一开始就确保了知识管理是以业务和价值为导向。因此,相关的业务部门可以更容易地从搜索、问答、推荐等场景出发来思考问题和提出需求,而不必先理解知识管理的操作,然后再考虑如何将其与自己的业务结合应用。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料。包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
在这里插入图片描述

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程扫描领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程扫描领取哈)
在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程扫描领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程扫描领取哈)
在这里插入图片描述
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程扫描领取哈)
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

Logo

火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。

更多推荐