【算法介绍】

基于YOLOv8的X光图像手骨检测系统是一种创新的医学影像分析技术,旨在为医生提供高效、准确的手骨结构识别工具。该系统利用YOLOv8深度学习模型,这是一种强大的卷积神经网络(CNN),在目标检测任务中表现出色,特别适用于需要实时反馈的医学影像分析。

该系统能够从X光图像中自动提取手骨特征,并对图像中的DIP(远端指间关节)、MCP(掌指关节)、PIP(近端指间关节)、Radius(桡骨)、Ulna(尺骨)和Wrist(腕骨)等关键部位进行精确定位。通过大规模的医学影像数据集训练和详细的图像标注,该系统实现了高精度的手骨结构识别,有助于医生判断患者的病情,如骨折、关节炎等,并决定下一步治疗方案。

此外,该系统结合了用户友好的界面设计,使得医生可以方便地导入X光图像数据,并实时查看检测结果。检测结果以图形化的方式展示,包括标注出各个关键部位的位置和名称,以及相应的置信度分数,便于医生快速做出诊断决策。

总的来说,基于YOLOv8的X光图像手骨检测系统为医生提供了一种高效、准确的手骨结构识别工具,有助于减轻医生的工作负担,提高诊断效率和准确性,为手骨患者的诊疗过程提供了有效支持。

【效果展示】

【测试环境】

windows10
anaconda3+python3.8
torch==2.3.0
ultralytics==8.3.81

【模型可以检测出6类别】

DIP(远端指间关节)、MCP(掌指关节)、PIP(近端指间关节)、Radius(桡骨)、Ulna(尺骨)和Wrist(腕骨)

【训练数据集介绍】

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):3839

标注数量(xml文件个数):3839

标注数量(txt文件个数):3839

标注类别数:6

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["DIP","MCP","PIP","Radius","Ulna","Wrist"]=>[远端指间关节,掌指关节,近端指间关节,桡骨,尺骨,手腕]

每个类别标注的框数:

DIP 框数 = 15232

MCP 框数 = 19153

PIP 框数 = 19137

Radius 框数 = 3792

Ulna 框数 = 3798

Wrist 框数 = 3836

总框数:64948

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图像预览:

标注例子:

【训练信息】

参数
训练集图片数 3064
验证集图片数 387
训练map 99.4%
训练精度(Precision) 99.7%
训练召回率(Recall) 99.2%

【验证集精度】

类别

MAP50

all

99

DIP

99

MCP

99

PIP

99

Radius

100

Ulna

99

Wrist

100

【界面设计】

class Ui_MainWindow(QtWidgets.QMainWindow):
    signal = QtCore.pyqtSignal(str, str)
 
    def setupUi(self):
        self.setObjectName("MainWindow")
        self.resize(1280, 728)
        self.centralwidget = QtWidgets.QWidget(self)
        self.centralwidget.setObjectName("centralwidget")
 
        self.weights_dir = './weights'
 
        self.picture = QtWidgets.QLabel(self.centralwidget)
        self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
        self.picture.setStyleSheet("background:black")
        self.picture.setObjectName("picture")
        self.picture.setScaledContents(True)
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
        self.label_2.setObjectName("label_2")
        self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
        self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
        self.cb_weights.setObjectName("cb_weights")
        self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)
 
        self.label_3 = QtWidgets.QLabel(self.centralwidget)
        self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
        self.label_3.setObjectName("label_3")
        self.hs_conf = QtWidgets.QSlider(self.centralwidget)
        self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
        self.hs_conf.setProperty("value", 25)
        self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
        self.hs_conf.setObjectName("hs_conf")
        self.hs_conf.valueChanged.connect(self.conf_change)
        self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
        self.dsb_conf.setMaximum(1.0)
        self.dsb_conf.setSingleStep(0.01)
        self.dsb_conf.setProperty("value", 0.25)
        self.dsb_conf.setObjectName("dsb_conf")
        self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
        self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
        self.dsb_iou.setMaximum(1.0)
        self.dsb_iou.setSingleStep(0.01)
        self.dsb_iou.setProperty("value", 0.45)
        self.dsb_iou.setObjectName("dsb_iou")
        self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
        self.hs_iou = QtWidgets.QSlider(self.centralwidget)
        self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
        self.hs_iou.setProperty("value", 45)
        self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
        self.hs_iou.setObjectName("hs_iou")
        self.hs_iou.valueChanged.connect(self.iou_change)
        self.label_4 = QtWidgets.QLabel(self.centralwidget)
        self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
        self.label_4.setObjectName("label_4")
        self.label_5 = QtWidgets.QLabel(self.centralwidget)
        self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
        self.label_5.setObjectName("label_5")
        self.le_res = QtWidgets.QTextEdit(self.centralwidget)
        self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
        self.le_res.setObjectName("le_res")
        self.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(self)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
        self.menubar.setObjectName("menubar")
        self.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(self)
        self.statusbar.setObjectName("statusbar")
        self.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(self)
        self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
        self.toolBar.setObjectName("toolBar")
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
        self.actionopenpic = QtWidgets.QAction(self)
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionopenpic.setIcon(icon)
        self.actionopenpic.setObjectName("actionopenpic")
        self.actionopenpic.triggered.connect(self.open_image)
        self.action = QtWidgets.QAction(self)
        icon1 = QtGui.QIcon()
        icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action.setIcon(icon1)
        self.action.setObjectName("action")
        self.action.triggered.connect(self.open_video)
        self.action_2 = QtWidgets.QAction(self)
        icon2 = QtGui.QIcon()
        icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action_2.setIcon(icon2)
        self.action_2.setObjectName("action_2")
        self.action_2.triggered.connect(self.open_camera)
 
        self.actionexit = QtWidgets.QAction(self)
        icon3 = QtGui.QIcon()
        icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionexit.setIcon(icon3)
        self.actionexit.setObjectName("actionexit")
        self.actionexit.triggered.connect(self.exit)
 
        self.toolBar.addAction(self.actionopenpic)
        self.toolBar.addAction(self.action)
        self.toolBar.addAction(self.action_2)
        self.toolBar.addAction(self.actionexit)
 
        self.retranslateUi()
        QtCore.QMetaObject.connectSlotsByName(self)
        self.init_all()

【使用步骤】

使用步骤:
(1)首先根据官方框架安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码
yolov8n.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)

注意源码提供训练的数据集

【常用评估参数介绍】

在目标检测任务中,评估模型的性能是至关重要的。你提到的几个术语是评估模型性能的常用指标。下面是对这些术语的详细解释:

  1. Class
    • 这通常指的是模型被设计用来检测的目标类别。例如,一个模型可能被训练来检测车辆、行人或动物等不同类别的对象。
  2. Images
    • 表示验证集中的图片数量。验证集是用来评估模型性能的数据集,与训练集分开,以确保评估结果的公正性。
  3. Instances
    • 在所有图片中目标对象的总数。这包括了所有类别对象的总和,例如,如果验证集包含100张图片,每张图片平均有5个目标对象,则Instances为500。
  4. P(精确度Precision)
    • 精确度是模型预测为正样本的实例中,真正为正样本的比例。计算公式为:Precision = TP / (TP + FP),其中TP表示真正例(True Positives),FP表示假正例(False Positives)。
  5. R(召回率Recall)
    • 召回率是所有真正的正样本中被模型正确预测为正样本的比例。计算公式为:Recall = TP / (TP + FN),其中FN表示假负例(False Negatives)。
  6. mAP50
    • 表示在IoU(交并比)阈值为0.5时的平均精度(mean Average Precision)。IoU是衡量预测框和真实框重叠程度的指标。mAP是一个综合指标,考虑了精确度和召回率,用于评估模型在不同召回率水平上的性能。在IoU=0.5时,如果预测框与真实框的重叠程度达到或超过50%,则认为该预测是正确的。
  7. mAP50-95
    • 表示在IoU从0.5到0.95(间隔0.05)的范围内,模型的平均精度。这是一个更严格的评估标准,要求预测框与真实框的重叠程度更高。在目标检测任务中,更高的IoU阈值意味着模型需要更准确地定位目标对象。mAP50-95的计算考虑了从宽松到严格的多个IoU阈值,因此能够更全面地评估模型的性能。

这些指标共同构成了评估目标检测模型性能的重要框架。通过比较不同模型在这些指标上的表现,可以判断哪个模型在实际应用中可能更有效。

 【常见问题】

目标检测训练中,Mean Average Precision(MAP)偏低可能有以下原因:
原因一:欠拟合:如果训练数据量过小,模型可能无法学习到足够的特征,从而影响预测效果,导致欠拟合,进而使MAP偏低。因此可以加大数据集数量
原因二:小目标:如果数据集包含大部分小目标则一般会有可能产生map偏低情况,因为小目标特征不明显,模型很难学到特征。
原因三:模型调参不对:比如学习率调整过大可能会导致学习能力过快,模型参数调节出现紊乱
原因四:过拟合(现在模型基本不存在这种情况):如果模型在训练数据上表现非常好,但在验证或测试数据上表现较差,可能是出现了过拟合。这通常是因为模型参数过多,而训练数据量相对较小,导致模型学习到了训练数据中的噪声或特定模式,而无法泛化到新的数据。如今现在目标检测模型都对这个情况做的很好,很少有这种情况发生。
原因五:场景不一样:验证集验证精度高,测试集不行,则有可能是与训练模型场景图片不一致导致测试map过低
针对以上原因,可以采取以下措施来提高MAP:

(1)优化模型结构:根据任务和数据集的特点选择合适的模型,并尝试使用不同的网络架构和构件来改进模型性能。
(2)增强数据预处理:对数据进行适当的预处理和增强,如数据归一化、缺失值填充、数据扩增等,以提高模型的泛化能力。
(3)调整损失函数:尝试使用不同的损失函数或组合多种损失函数来优化模型性能。
(4)优化训练策略:调整学习率、批次大小、训练轮数等超参数,以及使用学习率衰减、动量等优化算法来改善模型训练效果。
(5)使用预训练模型:利用在大规模数据集上预训练的模型进行迁移学习,可以加速模型收敛并提高性能。
(6)增加数据集数量,尽可能提供多场景图片,提高模型泛化能力,增强模型特征学习能力。
综上所述,提高目标检测训练的MAP需要从多个方面入手,包括优化模型结构、增强数据预处理、调整损失函数、优化训练策略以及使用预训练模型等。

    Logo

    火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。

    更多推荐