5分钟零成本实现本地AI知识库搭建
你一定经历过各种通用大模型一本正经胡说八道的时候吧,AI一通丝滑输出让人真假难辨,防不胜防。这种情况被称为AI幻觉。大模型产生幻觉不幸“翻车”的原因很大程度上是“先天不足”,例如训练时来自特定领域的训练数据就比较缺失或存在偏差等。对于企业,AI的幻觉已经成为阻碍其落地应用的严重缺陷。我们自然想让一些企业内部私有数据也进入到大模型推理分析的过程,让其更好服务于日常业务,但出于信息安全等考量,私有数据
你一定经历过各种通用大模型一本正经胡说八道的时候吧,AI一通丝滑输出让人真假难辨,防不胜防。这种情况被称为AI幻觉。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
大模型产生幻觉不幸“翻车”的原因很大程度上是“先天不足”,例如训练时来自特定领域的训练数据就比较缺失或存在偏差等。对于企业,AI的幻觉已经成为阻碍其落地应用的严重缺陷。
我们自然想让一些企业内部私有数据也进入到大模型推理分析的过程,让其更好服务于日常业务,但出于信息安全等考量,私有数据显然不可随意上传到第三方平台。针对这种情况,将企业内部知识库和大模型连接起来构建一个本地私有化的专属的AI知识库不失为一种简易的解决方案。
构建本地私有知识库的基本步骤
- 整理出需要模型分析的私有数据,比如文本数据(doc、csv、ppt…),音视频数据,甚至一些网址链接。
- 通过一个嵌入模型将这些信息转换成模型能够看得懂的向量信息,即信息的向量化。
- 将向量化的信息存储到专属的向量数据库中,构建本地知识库。
这个时候当用户提问时,我们引入的通用大模型将会结合本地知识库中所存在的信息有针对性的回答,甚至也可以专门分析本地知识库中的信息来输出。

本地AI知识库的安装和配置
AnythingLLM 是一款构建本地知识库的工具,能够直接读取文档并处理大量信息资源,包括文档上传、自动抓取在线文档,然后进行文本的自动分割、向量化处理,以及实现本地检索增强生成(RAG)等功能。
AnythingLLM支持几乎所有的主流大模型和多种文档类型,可定制化程度高,安装设置简单,适用于MacOS、Linux和Windows平台,也可以使用Docker安装。AnythingLLM默认通过Ollama来使用LLama2 7B、Mistral 7B、Gemma 2B等模型,也可以调用OpenAI、Gemini、Mistral等大模型的API服务。除AnythingLLM以外,近期较为热门的知识库工具还有MaxKB、RAGFlow、FastGPT、Dify 、Open WebUI 等。
01、下载并安装Ollama(用于下载各类通用大模型)
访问 https://ollama.com/download 选择所需版本

02、安装大模型和嵌入模型
我们示例中选择的是通义千问大模型和M3e嵌入模型,大家也可以根据自己的需要选择其他模型下载。Ollama支持的模型列表及资源占用情况可从官网查阅:https://ollama.com/library


03、下载并安装AnythingLLM
访问 https://anythingllm.com/download 选择对应版本

04、配置AnythingLLM
配置参数选择Ollama

Embedder选择M3e

向量数据库选择LanceDB(默认)

上传私有数据并验证AI问答效果
至此,一个AI驱动的本地私有知识库的基本架构已经搭建完成。接下来我们需要创建工作区,上传各种文档格式的企业私有数据,验证是否能正常工作。



01、csv表格
随意生成一份原始数据如下:

对话结果(对数据进行排序和筛选):


02、docx文档
原始数据是星融元AsterNOS网络操作系统的文档,其中涉及到高可靠特性的部分如下。

对话结果:

03、网址
超低时延交换机产品特性的片段如下。

对话结果:

可以看到,这个本地AI知识库已经在利用我们上传的私有文本数据回答问题了,下一步您需要持续不断地丰富私有内容,让其更加智能、可靠;大型企业则更需要对其“悉心调教”,例如充分考虑本地AI推理系统的并发接入性能,在网络基础设施上进行相应调整和升级,也要关注和其他内部工具的集成。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。
更多推荐
所有评论(0)