stable diffusion 训练的伪代码
stable diffusion 训练的伪代码。
·
stable diffusion 训练的伪代码
import torch
from diffusers import StableDiffusionPipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os
# 1. 初始化模型和数据
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to("cuda")
tokenizer = AutoTokenizer.from_pretrained("t5-base")
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base").to("cuda")
class CustomDataset(Dataset):
def __init__(self, data_dir, tokenizer):
self.data_dir = data_dir
self.tokenizer = tokenizer
self.data = self.load_data()
def load_data(self):
data = []
for file in os.listdir(self.data_dir):
image_path = os.path.join(self.data_dir, file)
text_path = os.path.join(self.data_dir, file.replace(".jpg", ".txt").replace(".png", ".txt"))
if os.path.exists(text_path):
with open(text_path, "r") as f:
text = f.read()
data.append((image_path, text))
return data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image_path, text = self.data[idx]
image = Image.open(image_path).convert("RGB")
inputs = self.tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=77)
return {"image": image, "input_ids": inputs["input_ids"].flatten()}
dataset = CustomDataset(data_dir="path_to_your_data", tokenizer=tokenizer)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
# 2. 数据预处理
def preprocess_image(image):
image = image.resize((512, 512))
image = torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).to("cuda", dtype=torch.float16) / 127.5 - 1.0
return image
# 3. 训练循环
optimizer = torch.optim.AdamW(pipe.unet.parameters(), lr=1e-5)
for epoch in range(10):
for batch in dataloader:
image = preprocess_image(batch["image"])
input_ids = batch["input_ids"].to("cuda")
# 计算损失
noise = torch.randn_like(image)
timesteps = torch.randint(0, pipe.scheduler.num_train_timesteps, (image.shape[0],)).to("cuda")
noisy_image = pipe.scheduler.add_noise(image, noise, timesteps)
noise_pred = pipe.unet(noisy_image, timesteps, context=model(input_ids, attention_mask=attention_mask)[0]).sample
loss = torch.nn.functional.mse_loss(noise_pred, noise)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 4. 保存模型
pipe.save_pretrained(f"custom_model_epoch_{epoch}")
火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。
更多推荐
所有评论(0)