RAG 文档解析工具选型指南
本文探讨了RAG系统处理不同类型知识的方法,包括结构化、半结构化、非结构化和多模态知识。结构化知识如知识图谱和表格,虽易查询但集成困难;半结构化数据如HTML和JSON,需要专门工具解析;非结构化知识如PDF和纯文本,需借助OCR等技术处理;多模态知识则需对齐不同模态到共享嵌入空间。文章还推荐了相关工具,并展望了能理解多种知识格式的RAG系统前景。最后提供了一套AI大模型学习资源,涵盖视频教程、技
对于 RAG 系统而言,从文档中提取信息是一个不可避免的情况。最终系统输出的质量很大程度上取决于从源内容中提取信息的效果。
对于 RAG 系统而言,从文档中提取信息是一个不可避免的情况。最终系统输出的质量很大程度上取决于从源内容中提取信息的效果。
过去,我曾从不同角度探讨过文档解析问题[1]。本文结合近期一篇 RAG 调查报告[2]的发现与我之前的部分研究,对 RAG 系统如何解析和整合结构化、半结构化、非结构化和多模态知识进行了简明概括。

image.png
Figure 1: RAG 系统整合的多种知识类型,涵盖结构化、半结构化、非结构化和多模态知识。[Source[2]]
1.结构化知识:数据按规则组织的范式
1.1 知识图谱:易于查询,便于使用,难以集成
知识图谱以一种清晰、互联的方式描述实体及其关系,使其成为机器系统的图谱遍历与查询的理想选择。
RAG 系统非常喜欢这样的结构化数据源 —— 它们精确且语义丰富。但真正的挑战不在于查找数据,而在于如何有效地利用它。
- 如何从海量知识图谱中提取有意义的子图?
- 如何将结构化的图谱数据与自然语言对齐?
- 随着图谱规模的增长,系统是否仍能保持高效?
一些有前景的解决方案正逐步解决这些问题:
- GRAG 从多个文档中检索子图,来生成更聚焦的输入。
- KG-RAG 采用探索链算法(Chain of Explorations,CoE)来优化基于知识图谱的问答性能。
- GNN-RAG 采用图神经网络(GNN)检索和处理来自知识图谱(KG)的信息,在数据输入大语言模型(LLM)之前先进行一轮推理。
- SURGE 框架利用知识图谱生成更具相关性和知识感知(knowledge-aware)的对话,从而提升交互质量。
- 在特定领域,诸如 SMART-SLIC、KARE、ToG2.0 和 KAG[3] 等工具已充分证明,知识图谱作为外部知识源可以发挥多么强大的作用,可帮助 RAG 系统同时提升准确性和效率。
1.2 表格:结构紧凑、数据密集且解析困难
表格也是一种结构化数据 —— 但它们与知识图谱截然不同。几行几列就可能蕴含着大量信息。但如何让机器理解这些信息?那完全是另一回事了。
表格中未明示的逻辑关系、格式不一致、专业领域内特有的知识...表格数据常游走于秩序与混沌之间。幸运的是,已有专门处理此类复杂情况的工具:
- TableRAG[4] 结合查询扩展(query expansion)、表结构与单元格检索(schema and cell retrieval),在将信息传递给语言模型前精准识别关键内容。
- TAG 和 Extreme-RAG 则更进一步整合了 Text-to-SQL 能力,使语言模型能够直接“操作数据库”。
核心结论?若能有效解析表格,它们就是价值极高的信息源。
2.半结构化数据:HTML、JSON 以及网络数据的杂乱中间态
半结构化数据就像数据世界的“家中老二(middle child)” —— 既非完全结构化,也不完全是非结构化的。它比知识图谱更灵活,却比原始 PDF 文档更有条理。典型代表如 HTML 页面、JSON 文件、XML、电子邮件等格式,它们虽具备一定的结构特性,却常表现出结构规范不一致或结构要素不完备的特征。
尤其是 HTML,它无处不在,而每个网站都有其独特性。虽然存在 tags、attributes、elements(译者注:DOM 核心构件) 等结构化成分,但仍混杂着大量非结构化文本与图像。
为了有效解析 HTML,业界已开发出一系列工具和开源库,可将 HTML 内容转化为文档对象模型(DOM)树等结构化格式。值得关注的流行库包括:BeautifulSoup、htmlparser2、html5ever、MyHTML 以及 Fast HTML Parser。
此外,HtmlRAG[5] 等 RAG 框架在 RAG 系统中利用 HTML 格式替代纯文本,从而保留了语义与结构信息。
若希望 RAG 系统真正理解网页数据而非依靠胡编乱造 —— HTML 解析便是这一切的起点。
3.非结构化知识:PDF、纯文本(既杂乱又有内在逻辑)
接下来叙述的内容才是真正的挑战。非结构化数据(自由格式的文本、PDF 文档、扫描报告)无处不在。
尤其是 PDF 文档,简直就是噩梦:不一致的布局、嵌入内部的图像、复杂的格式。但在学术、法律和金融等领域它们不可或缺。那么,我们该如何让它们符合 RAG 系统的要求呢?
我们可以使用更智能的 OCR 技术、版面分析技术和视觉内容 - 语言融合技术:
- Levenshtein OCR 和 GTR 结合视觉和语言线索来提高识别准确率。
- OmniParser 和 Doc-GCN 专注于保留文档的结构。
- ABINet 采用双向处理机制提升 OCR 系统的表现。
与此同时,一大波开源工具的出现使得将 PDF 转换为 Markdown(一种对 LLM 更友好的格式)的过程变得更加容易。有哪些工具?我基本都已经介绍过了!
- GPTPDF[6] 利用视觉模型解析表格、公式等复杂版面结构,并快速转换为 Markdown 格式 —— 该工具运行高效且成本低廉,适合大规模部署。
- Marker[7] 专注于清除噪声元素,同时还保留原始格式,因而成为处理研究论文和实验报告的首选工具。
- PDF-Extract-Kit(MinerU 采用的 PDF-Extract-Kit 模型库[8])支持高质量内容提取,包括公式识别与版面检测。
- Zerox OCR[9] 对每页文档进行快照处理,通过 GPT 模型生成 Markdown,从而高效管理复杂文档结构。
- MinerU[10] 是一种综合解决方案,可保留标题/表格等原始文档结构,并支持受损 PDF 的 OCR 处理。
- MarkItDown[11] 是一种多功能转换工具,支持将 PDF、媒体文件、网页数据和归档文件转为 Markdown。
4.多模态知识:图像、音频与视频数据一同入场
传统 RAG 系统专为文本数据而设计,因此在处理图像、音频或视频等多模态信息时往往力不从心。这就导致其回应常显得肤浅或不完整 —— 尤其当核心信息蕴含于非文本内容中时。
为应对这些挑战,多模态 RAG 系统引入了整合和检索不同模态的基本方法。其核心思想是将文本、图像、音频、视频等模态对齐到共享嵌入空间(shared embedding space),实现统一处理和检索。例如:
- CLIP 在共享嵌入空间中对齐视觉与语言模态。
- Wav2Vec 2.0 和 CLAP 专注于建立音频与文本的关联。
- 在视频领域,ViViT 等模型专为捕捉时空特征而设计。
这些技术都是基础模块。随着系统的不断演进迭代,我们将看到能够一次性从文档、幻灯片及语音内容中提取洞见的 RAG 应用。
5.结语
在实践中,我发现 MinerU 是解析 PDF 的最佳开源工具。
当然,若你想自建文档解析器,自然需处理诸多复杂细节。但这样做的回报是值得的:更自主的源代码控制、更强的文档安全性,以及更可靠的结果。
后续若有契机,我将分享更多工程实践洞见。
我们正在超越纯文本语言模型的时代。倘若能教会机器理解人类传递知识的各种格式,或许它们也能协助我们更透彻地理解这个世界。
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。


(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取(扫下方二v码即可100%领取)
火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。
更多推荐
所有评论(0)