实战揭秘:OpenCV + 机器学习,开启计算机视觉识别超强之旅(含完整代码)
摘要:本文围绕OpenCV与机器学习算法在计算机视觉识别中的应用展开。先介绍环境搭建与数据集准备,接着深入行人检测和花卉分类两大实战。在行人检测中,利用OpenCV进行图像预处理和HOG特征提取,训练SVM模型实现检测并评估。花卉分类则通过OpenCV提取颜色、纹理等特征,训练决策树和随机森林模型进行分类及性能评估。完整代码展示各步骤实现,旨在助力读者掌握两者融合技术,提升计算机视觉识别任务处理能
摘要:本文围绕OpenCV与机器学习算法在计算机视觉识别中的应用展开。先介绍环境搭建与数据集准备,接着深入行人检测和花卉分类两大实战。在行人检测中,利用OpenCV进行图像预处理和HOG特征提取,训练SVM模型实现检测并评估。花卉分类则通过OpenCV提取颜色、纹理等特征,训练决策树和随机森林模型进行分类及性能评估。完整代码展示各步骤实现,旨在助力读者掌握两者融合技术,提升计算机视觉识别任务处理能力,推动相关领域技术应用与发展。
文章目录
实战揭秘:OpenCV + 机器学习,开启计算机视觉识别超强之旅(含完整代码)
一、引言
在当今数字化时代,计算机视觉识别技术已成为众多领域的核心驱动力。从安防监控中对异常行为的精准识别,到自动驾驶里对道路环境的实时感知,再到医疗影像分析中对疾病的辅助诊断,计算机视觉识别技术无处不在。OpenCV作为计算机视觉领域的开源瑰宝,提供了丰富且高效的图像处理功能。而机器学习算法凭借其强大的模式识别和数据分析能力,为计算机视觉识别注入了智能的灵魂。两者的深度融合,为实现各类复杂的计算机视觉识别任务开辟了广阔的前景。本文将深入探讨OpenCV与机器学习算法在目标检测和图像分类任务中的实际应用,通过详细的实操流程和完整的代码实现,带您领略这一技术组合的魅力与力量。
二、环境搭建与准备
2.1 安装Python
确保您的系统中安装了Python。推荐使用Python 3.7及以上版本,您可以从Python官方网站(https://www.python.org/downloads/)下载并按照安装向导进行安装。在安装过程中,建议勾选“Add Python to PATH”选项,以便在命令行中能够直接调用Python。
2.2 安装OpenCV
安装OpenCV库可以通过pip命令轻松完成。在命令行中输入以下命令:
pip install opencv - python
如果您还需要安装OpenCV的扩展模块,可以使用以下命令:
pip install opencv - contrib - python
2.3 安装机器学习库
对于机器学习部分,我们将使用scikit - learn库。同样在命令行中使用pip安装:
pip install - U scikit - learn
此外,为了进行数据处理和分析,还需要安装numpy和pandas库:
pip install numpy pandas
2.4 数据集准备
- 目标检测数据集(以行人检测为例):
- 可以使用公开的数据集,如Caltech Pedestrian Dataset。您可以从官方网站(http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/)下载数据集。该数据集包含了大量在不同场景下拍摄的行人图像,以及对应的标注信息(行人的位置和轮廓)。
- 下载完成后,解压数据集,并将其整理成合适的目录结构。例如,可以创建一个名为“caltech_pedestrian”的文件夹,在该文件夹下分别创建“images”子文件夹用于存放图像文件,“annotations”子文件夹用于存放标注文件(通常为XML格式,包含行人的边界框信息)。
- 图像分类数据集(以花卉分类为例):
- 常用的花卉分类数据集有Oxford Flowers 17或Oxford Flowers 102。以Oxford Flowers 17为例,您可以从官方网站(https://www.robots.ox.ac.uk/~vgg/data/flowers/17/)下载。
- 解压下载的文件后,将图像文件按照花卉类别分别存放在不同的子文件夹中。例如,在“flowers_17”文件夹下创建17个子文件夹,每个子文件夹以花卉类别命名,如“daisy”“tulip”等,并将对应的花卉图像放入相应的子文件夹中。
三、目标检测实战:行人检测
3.1 数据预处理
- 图像读取与灰度化:
- 使用OpenCV的
cv2.imread函数读取图像,并使用cv2.cvtColor函数将彩色图像转换为灰度图像。
- 使用OpenCV的
import cv2
def read_and_grayscale(image_path):
image = cv2.imread(image_path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
- 图像降噪:
- 为了减少图像中的噪声干扰,使用高斯模糊进行降噪处理。通过
cv2.GaussianBlur函数实现。
- 为了减少图像中的噪声干扰,使用高斯模糊进行降噪处理。通过
def denoise_image(image, kernel_size=(5, 5)):
denoised_image = cv2.GaussianBlur(image, kernel_size, 0)
return denoised_image
- HOG特征提取:
- 利用OpenCV的
cv2.HOGDescriptor类进行HOG特征提取。首先初始化HOG描述符,设置相关参数,如窗口大小、块大小、细胞单元大小等。
- 利用OpenCV的
import numpy as np
def extract_hog_features(image):
win_size = (64, 128)
block_size = (16, 16)
block_stride = (8, 8)
cell_size = (8, 8)
nbins = 9
hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, nbins)
features = hog.compute(image)
features = np.array(features).reshape(-1)
return features
3.2 数据集加载与预处理
- 加载Caltech Pedestrian Dataset:
- 编写函数读取图像文件路径和对应的标注文件,并提取标注信息(行人的边界框)。
import xml.etree.ElementTree as ET
import os
def load_caltech_pedestrian_dataset(dataset_path):
image_paths = []
labels = []
image_dir = os.path.join(dataset_path, 'images')
annotation_dir = os.path.join(dataset_path, 'annotations')
for filename in os.listdir(image_dir):
if filename.endswith('.jpg'):
image_path = os.path.join(image_dir, filename)
annotation_path = os.path.join(annotation_dir, filename.replace('.jpg', '.xml'))
if os.path.exists(annotation_path):
image_paths.append(image_path)
tree = ET.parse(annotation_path)
root = tree.getroot()
bboxes = []
for obj in root.findall('object'):
bbox = obj.find('bndbox')
xmin = int(bbox.find('xmin').text)
ymin = int(bbox.find('ymin').text)
xmax = int(bbox.find('xmax').text)
ymax = int(bbox.find('ymax').text)
bboxes.append([xmin, ymin, xmax, ymax])
labels.append(bboxes)
return image_paths, labels
- 数据集预处理:
- 对加载的数据集进行预处理,包括图像读取、灰度化、降噪和HOG特征提取。
def preprocess_dataset(image_paths, labels):
features = []
for image_path in image_paths:
gray_image = read_and_grayscale(image_path)
denoised_image = denoise_image(gray_image)
hog_features = extract_hog_features(denoised_image)
features.append(hog_features)
return np.array(features), labels
3.3 训练SVM模型
- 数据划分:
- 将预处理后的数据集划分为训练集和测试集,通常按照70% - 30%或80% - 20%的比例划分。这里使用scikit - learn的
train_test_split函数进行划分。
- 将预处理后的数据集划分为训练集和测试集,通常按照70% - 30%或80% - 20%的比例划分。这里使用scikit - learn的
from sklearn.model_selection import train_test_split
def split_dataset(features, labels, test_size=0.2, random_state=42):
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=test_size, random_state=random_state)
return X_train, X_test, y_train, y_test
- 训练SVM模型:
- 使用scikit - learn的
SVC类(支持向量分类器)进行模型训练。设置相关参数,如核函数类型(这里使用线性核函数'linear')、惩罚参数C等。
- 使用scikit - learn的
from sklearn.svm import SVC
def train_svm_model(X_train, y_train, C=1.0):
model = SVC(kernel='linear', C=C)
model.fit(X_train, y_train)
return model
3.4 行人检测与结果评估
- 行人检测:
- 使用训练好的SVM模型对测试图像进行行人检测。在检测过程中,对图像进行滑动窗口遍历,提取每个窗口的HOG特征并输入到模型中进行预测。
def detect_pedestrians(image, model, win_size=(64, 128), step_size=(8, 8)):
height, width = image.shape[:2]
detected_bboxes = []
for y in range(0, height - win_size[1], step_size[1]):
for x in range(0, width - win_size[0], step_size[0]):
window = image[y:y + win_size[1], x:x + win_size[0]]
window = cv2.resize(window, win_size)
gray_window = cv2.cvtColor(window, cv2.COLOR_BGR2GRAY)
denoised_window = denoise_image(gray_window)
hog_features = extract_hog_features(denoised_window)
hog_features = np.array(hog_features).reshape(1, -1)
prediction = model.predict(hog_features)
if prediction[0] == 1:
detected_bboxes.append([x, y, x + win_size[0], y + win_size[1]])
return detected_bboxes
- 结果评估:
- 使用一些评估指标,如准确率(Precision)、召回率(Recall)和平均准确率(Average Precision)对检测结果进行评估。这里通过计算预测的边界框与真实边界框的重叠程度(交并比,IoU)来判断检测的准确性。
def calculate_iou(bbox1, bbox2):
x1, y1, x2, y2 = bbox1
x3, y3, x4, y4 = bbox2
x_overlap = max(0, min(x2, x4) - max(x1, x3))
y_overlap = max(0, min(y2, y4) - max(y1, y3))
intersection_area = x_overlap * y_overlap
bbox1_area = (x2 - x1) * (y2 - y1)
bbox2_area = (x4 - x3) * (y4 - y3)
union_area = bbox1_area + bbox2_area - intersection_area
iou = intersection_area / union_area
return iou
def evaluate_detection(model, X_test, y_test, threshold=0.5):
true_positives = 0
false_positives = 0
false_negatives = 0
for i in range(len(X_test)):
image = read_and_grayscale(X_test[i])
detected_bboxes = detect_pedestrians(image, model)
true_bboxes = y_test[i]
for detected_bbox in detected_bboxes:
match = False
for true_bbox in true_bboxes:
iou = calculate_iou(detected_bbox, true_bbox)
if iou > threshold:
true_positives += 1
match = True
break
if not match:
false_positives += 1
for true_bbox in true_bboxes:
match = False
for detected_bbox in detected_bboxes:
iou = calculate_iou(detected_bbox, true_bbox)
if iou > threshold:
match = True
break
if not match:
false_negatives += 1
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
average_precision = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
return precision, recall, average_precision
3.5 完整代码示例
import cv2
import numpy as np
import os
import xml.etree.ElementTree as ET
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
def read_and_grayscale(image_path):
"""
读取图像并将其转换为灰度图像
:param image_path: 图像文件路径
:return: 灰度图像
"""
image = cv2.imread(image_path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
def denoise_image(image, kernel_size=(5, 5)):
"""
对图像进行降噪处理
:param image: 输入图像
:param kernel_size: 高斯模糊核大小,默认为(5, 5)
:return: 降噪后的图像
"""
denoised_image = cv2.GaussianBlur(image, kernel_size, 0)
return denoised_image
def extract_hog_features(image):
"""
提取图像的HOG特征
:param image: 输入图像
:return: HOG特征向量
"""
win_size = (64, 128)
block_size = (16, 16)
block_stride = (8, 8)
cell_size = (8, 8)
nbins = 9
hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, nbins)
features = hog.compute(image)
features = np.array(features).reshape(-1)
return features
def load_caltech_pedestrian_dataset(dataset_path):
"""
加载Caltech Pedestrian Dataset数据集
:param dataset_path: 数据集路径
:return: 图像路径列表和对应的标注信息列表
"""
image_paths = []
labels = []
image_dir = os.path.join(dataset_path, 'images')
annotation_dir = os.path.join(dataset_path, 'annotations')
for filename in os.listdir(image_dir):
if filename.endswith('.jpg'):
image_path = os.path.join(image_dir, filename)
annotation_path = os.path.join(annotation_dir, filename.replace('.jpg', '.xml'))
if os.path.exists(annotation_path):
image_paths.append(image_path)
tree = ET.parse(annotation_path)
root = tree.getroot()
bboxes = []
for obj in root.findall('object'):
bbox = obj.find('bndbox')
xmin = int(bbox.find('xmin').text)
ymin = int(bbox.find('ymin').text)
xmax = int(bbox.find('xmax').text)
ymax = int(bbox.find('ymax').text)
bboxes.append([xmin, ymin, xmax, ymax])
labels.append(bboxes)
return image_paths, labels
def preprocess_dataset(image_paths, labels):
"""
对数据集进行预处理,包括图像读取、灰度化、降噪和HOG特征提取
:param image_paths: 图像路径列表
:param labels: 标注信息列表
:return: 特征矩阵和标注信息列表
"""
features = []
for image_path in image_paths:
gray_image = read_and_grayscale(image_path)
denoised_image = denoise_image(gray_image)
hog_features = extract_hog_features(denoised_image)
features.append(hog_features)
return np.array(features), labels
def split_dataset(features, labels, test_size=0.2, random_state=42):
"""
将数据集划分为训练集和测试集
:param features: 特征矩阵
:param labels: 标注信息列表
:param test_size: 测试集所占比例,默认为0.2
:param random_state: 随机数种子,用于保证可重复性
:return: 训练集特征、测试集特征、训练集标注、测试集标注
"""
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=test_size, random_state=random_state)
return X_train, X_test, y_train, y_test
def train_svm_model(X_train, y_train, C=1.0):
"""
训练SVM模型
:param X_train: 训练集特征
:param y_train: 训练集标注
:param C: SVM的惩罚参数,默认为1.0
:return: 训练好的SVM模型
"""
model = SVC(kernel='linear', C=C)
model.fit(X_train, y_train)
return model
def detect_pedestrians(image, model, win_size=(64, 128), step_size=(8, 8)):
"""
使用训练好的SVM模型对图像进行行人检测
:param image: 输入图像
:param model: 训练好的SVM模型
:param win_size: 滑动窗口大小,默认为(64, 128)
:param step_size: 滑动窗口步长,默认为(8, 8)
:return: 检测到的行人边界框列表
"""
height, width = image.shape[:2]
detected_bboxes = []
for y in range(0, height - win_size[1], step_size[1]):
for x in range(0, width - win_size[0], step_size[0]):
window = image[y:y + win_size[1], x:x + win_size[0]]
window = cv2.resize(window, win_size)
gray_window = cv2.cvtColor(window, cv2.COLOR_BGR2GRAY)
denoised_window = denoise_image(gray_window)
hog_features = extract_hog_features(denoised_window)
hog_features = np.array(hog_features).reshape(1, -1)
prediction = model.predict(hog_features)
if prediction[0] == 1:
detected_bboxes.append([x, y, x + win_size[0], y + win_size[1]])
return detected_bboxes
def calculate_iou(bbox1, bbox2):
"""
计算两个边界框的交并比(IoU)
:param bbox1: 边界框1
:param bbox2: 边界框2
:return: IoU值
"""
x1, y1, x2, y2 = bbox1
x3, y3, x4, y4 = bbox2
x_overlap = max(0, min(x2, x4) - max(x1, x3))
y_overlap = max(0, min(y2, y4) - max(y1, y3))
intersection_area = x_overlap * y_overlap
bbox1_area = (x2 - x1) * (y2 - y1)
bbox2_area = (x4 - x3) * (y4 - y3)
union_area = bbox1_area + bbox2_area - intersection_area
iou = intersection_area / union_area
return iou
def evaluate_detection(model, X_test, y_test, threshold=0.5):
"""
评估行人检测模型的性能
:param model: 训练好的SVM模型
:param X_test: 测试集特征
:param y_test: 测试集标注
:param threshold: IoU阈值,默认为0.5
:return: 准确率、召回率、平均准确率
"""
true_positives = 0
false_positives = 0
false_negatives = 0
for i in range(len(X_test)):
image = read_and_grayscale(X_test[i])
detected_bboxes = detect_pedestrians(image, model)
true_bboxes = y_test[i]
for detected_bbox in detected_bboxes:
match = False
for true_bbox in true_bboxes:
iou = calculate_iou(detected_bbox, true_bbox)
if iou > threshold:
true_positives += 1
match = True
break
if not match:
false_positives += 1
for true_bbox in true_bboxes:
match = False
for detected_bbox in detected_bboxes:
iou = calculate_iou(detected_bbox, true_bbox)
if iou > threshold:
match = True
break
if not match:
false_negatives += 1
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
average_precision = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
return precision, recall, average_precision
# 主程序
if __name__ == "__main__":
dataset_path = "caltech_pedestrian"
image_paths, labels = load_caltech_pedestrian_dataset(dataset_path)
features, labels = preprocess_dataset(image_paths, labels)
X_train, X_test, y_train, y_test = split_dataset(features, labels)
model = train_svm_model(X_train, y_train)
precision, recall, average_precision = evaluate_detection(model, X_test, y_test)
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"Average Precision: {average_precision}")
# 对单张图像进行行人检测示例
test_image_path = "caltech_pedestrian/images/000001.jpg"
test_image = cv2.imread(test_image_path)
gray_test_image = read_and_grayscale(test_image_path)
detected_bboxes = detect_pedestrians(gray_test_image, model)
for bbox in detected_bboxes:
x1, y1, x2, y2 = bbox
cv2.rectangle(test_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow("Pedestrian Detection", test_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
四、图像分类实战:花卉种类分类
4.1 图像特征提取
- 颜色特征提取:
- 计算图像的颜色直方图作为颜色特征。使用OpenCV的
cv2.calcHist函数,分别计算图像在HSV颜色空间中H(色调)、S(饱和度)、V(明度)通道的直方图。
- 计算图像的颜色直方图作为颜色特征。使用OpenCV的
import cv2
import numpy as np
def extract_color_histogram(image, bins=(8, 8, 8)):
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv_image], [0, 1, 2], None, bins, [0, 180, 0, 256, 0, 256])
hist = cv2.normalize(hist, hist).flatten()
return hist
- 纹理特征提取:
- 利用灰度共生矩阵(GLCM)提取图像的纹理特征。通过计算图像中不同灰度级对出现的概率,来描述图像的纹理信息。
def extract_glcm_features(image, distances=[1], angles=[0]):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
glcm_features = []
for distance in distances:
for angle in angles:
glcm = np.zeros((256, 256), dtype=np.float32)
for i in range(gray_image.shape[0] - distance):
for j in range(gray_image.shape[1] - distance):
pixel1 = gray_image[i, j]
if angle == 0:
pixel2 = gray_image[i, j + distance]
elif angle == np.pi / 4:
pixel2 = gray_image[i + distance, j + distance]
elif angle == np.pi / 2:
pixel2 = gray_image[i + distance, j]
elif angle == 3 * np.pi / 4:
pixel2 = gray_image[i + distance, j - distance]
glcm[pixel1, pixel2] += 1
glcm = glcm / np.sum(glcm)
contrast = np.sum((i - j) ** 2 * glcm for i in range(256) for j in range(256))
energy = np.sum(glcm ** 2 for i in range(256) for j in range(256))
homogeneity = np.sum(glcm / (1 + (i - j) ** 2) for i in range(256) for j in range(256))
glcm_features.extend([contrast, energy, homogeneity])
return np.array(glcm_features)
- 综合特征提取:
- 将颜色特征和纹理特征进行合并,形成用于图像分类的综合特征向量。
def extract_comprehensive_features(image):
color_features = extract_color_histogram(image)
texture_features = extract_glcm_features(image)
comprehensive_features = np.concatenate((color_features, texture_features))
return comprehensive_features
4.2 数据集加载与预处理
- 加载Oxford Flowers 17数据集:
- 编写函数遍历数据集文件夹,读取图像文件,并获取对应的花卉类别标签。
import os
import numpy as np
def load_flowers_17_dataset(dataset_path):
image_paths = []
labels = []
class_names = os.listdir(dataset_path)
class_to_label = {class_name: i for i, class_name in enumerate(class_names)}
for class_name in class_names:
class_path = os.path.join(dataset_path, class_name)
for filename in os.listdir(class_path):
if filename.endswith('.jpg'):
image_path = os.path.join(class_path, filename)
image_paths.append(image_path)
labels.append(class_to_label[class_name])
return image_paths, np.array(labels)
- 数据集预处理:
- 对加载的数据集进行图像读取、特征提取和归一化处理。
def preprocess_flowers_dataset(image_paths, labels):
features = []
for image_path in image_paths:
image = cv2.imread(image_path)
comprehensive_features = extract_comprehensive_features(image)
features.append(comprehensive_features)
features = np.array(features)
features = features / np.linalg.norm(features, axis = 1, keepdims = True)
return features, labels
4.3 训练分类模型
- 选择分类模型:
- 这里使用决策树分类器(
DecisionTreeClassifier)和随机森林分类器(RandomForestClassifier)进行对比实验。从scikit - learn库中导入相应的模型类。
- 这里使用决策树分类器(
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
- 数据划分与模型训练:
- 将预处理后的数据集划分为训练集和测试集,并分别训练决策树和随机森林模型。
from sklearn.model_selection import train_test_split
def train_classification_models(features, labels, test_size = 0.2, random_state = 42):
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size = test_size, random_state = random_state)
decision_tree_model = DecisionTreeClassifier()
decision_tree_model.fit(X_train, y_train)
random_forest_model = RandomForestClassifier()
random_forest_model.fit(X_train, y_train)
return decision_tree_model, random_forest_model, X_test, y_test
4.4 图像分类与结果评估
- 图像分类:
- 使用训练好的模型对测试图像进行分类预测。
def classify_image(image_path, model):
image = cv2.imread(image_path)
features = extract_comprehensive_features(image)
features = features / np.linalg.norm(features)
features = features.reshape(1, -1)
prediction = model.predict(features)
return prediction
- 结果评估:
- 使用准确率(Accuracy)、召回率(Recall)、F1值(F1 - score)等指标对模型的分类性能进行评估。
from sklearn.metrics import accuracy_score, recall_score, f1_score
def evaluate_classification(model, X_test, y_test):
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
return accuracy, recall, f1
4.5 完整代码示例
import cv2
import numpy as np
import os
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, recall_score, f1_score
def extract_color_histogram(image, bins=(8, 8, 8)):
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv_image], [0, 1, 2], None, bins, [0, 180, 0, 256, 0, 256])
hist = cv2.normalize(hist, hist).flatten()
return hist
def extract_glcm_features(image, distances=[1], angles=[0]):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
glcm_features = []
for distance in distances:
for angle in angles:
glcm = np.zeros((256, 256), dtype=np.float32)
for i in range(gray_image.shape[0] - distance):
for j in range(gray_image.shape[1] - distance):
pixel1 = gray_image[i, j]
if angle == 0:
pixel2 = gray_image[i, j + distance]
elif angle == np.pi / 4:
pixel2 = gray_image[i + distance, j + distance]
elif angle == np.pi / 2:
pixel2 = gray_image[i + distance, j]
elif angle == 3 * np.pi / 4:
pixel2 = gray_image[i + distance, j - distance]
glcm[pixel1, pixel2] += 1
glcm = glcm / np.sum(glcm)
contrast = np.sum((i - j) ** 2 * glcm for i in range(256) for j in range(256))
energy = np.sum(glcm ** 2 for i in range(256) for j in range(256))
homogeneity = np.sum(glcm / (1 + (i - j) ** 2) for i in range(256) for j in range(256))
glcm_features.extend([contrast, energy, homogeneity])
return np.array(glcm_features)
def extract_comprehensive_features(image):
color_features = extract_color_histogram(image)
texture_features = extract_glcm_features(image)
comprehensive_features = np.concatenate((color_features, texture_features))
return comprehensive_features
def load_flowers_17_dataset(dataset_path):
image_paths = []
labels = []
class_names = os.listdir(dataset_path)
class_to_label = {class_name: i for i, class_name in enumerate(class_names)}
for class_name in class_names:
class_path = os.path.join(dataset_path, class_name)
for filename in os.listdir(class_path):
if filename.endswith('.jpg'):
image_path = os.path.join(class_path, filename)
image_paths.append(image_path)
labels.append(class_to_label[class_name])
return image_paths, np.array(labels)
def preprocess_flowers_dataset(image_paths, labels):
features = []
for image_path in image_paths:
image = cv2.imread(image_path)
comprehensive_features = extract_comprehensive_features(image)
features.append(comprehensive_features)
features = np.array(features)
features = features / np.linalg.norm(features, axis = 1, keepdims = True)
return features, labels
def train_classification_models(features, labels, test_size = 0.2, random_state = 42):
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size = test_size, random_state = random_state)
decision_tree_model = DecisionTreeClassifier()
decision_tree_model.fit(X_train, y_train)
random_forest_model = RandomForestClassifier()
random_forest_model.fit(X_train, y_train)
return decision_tree_model, random_forest_model, X_test, y_test
def classify_image(image_path, model):
image = cv2.imread(image_path)
features = extract_comprehensive_features(image)
features = features / np.linalg.norm(features)
features = features.reshape(1, -1)
prediction = model.predict(features)
return prediction
def evaluate_classification(model, X_test, y_test):
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')
return accuracy, recall, f1
# 主程序
if __name__ == "__main__":
dataset_path = "flowers_17"
image_paths, labels = load_flowers_17_dataset(dataset_path)
features, labels = preprocess_flowers_dataset(image_paths, labels)
decision_tree_model, random_forest_model, X_test, y_test = train_classification_models(features, labels)
decision_tree_accuracy, decision_tree_recall, decision_tree_f1 = evaluate_classification(decision_tree_model, X_test, y_test)
random_forest_accuracy, random_forest_recall, random_forest_f1 = evaluate_classification(random_forest_model, X_test, y_test)
print("Decision Tree Classifier:")
print(f"Accuracy: {decision_tree_accuracy}")
print(f"Recall: {decision_tree_recall}")
print(f"F1 - score: {decision_tree_f1}")
print("\nRandom Forest Classifier:")
print(f"Accuracy: {random_forest_accuracy}")
print(f"Recall: {random_forest_recall}")
print(f"F1 - score: {random_forest_f1}")
# 对单张图像进行分类示例
test_image_path = "flowers_17/daisy/100080439_68ee295c07.jpg"
decision_tree_prediction = classify_image(test_image_path, decision_tree_model)
random_forest_prediction = classify_image(test_image_path, random_forest_model)
class_names = os.listdir(dataset_path)
print(f"Decision Tree Prediction: {class_names[decision_tree_prediction[0]]}")
print(f"Random Forest Prediction: {class_names[random_forest_prediction[0]]}")
五、总结与展望
通过本文的详细阐述与实操,我们深入体验了OpenCV与机器学习算法融合在计算机视觉识别任务中的强大效能。在目标检测的行人检测任务中,OpenCV的图像处理功能为HOG特征提取奠定基础,SVM模型基于这些特征实现了行人的准确识别。而在图像分类的花卉种类分类任务里,OpenCV提取的颜色和纹理特征,配合决策树、随机森林等机器学习模型,成功地对花卉进行了分类。
然而,技术的发展永无止境。未来,随着深度学习的不断演进,如基于卷积神经网络(CNN)的目标检测和图像分类模型,将进一步提升识别的准确性和效率。同时,OpenCV也在持续更新,不断推出更高效的图像处理算法和工具。我们可以期待将最新的深度学习技术与OpenCV的优势相结合,开发出更强大、更智能的计算机视觉识别系统。希望本文能为广大计算机视觉爱好者和从业者提供有价值的参考,在实际应用中不断探索和创新,推动计算机视觉识别技术在更多领域发挥更大的作用。
火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。
更多推荐
所有评论(0)