AI图像修复技术概述

AI图像修复(Image Inpainting)是一种基于深度学习的计算机视觉技术,用于修复图像中缺失或损坏的区域。通过生成对抗网络(GAN)、扩散模型(Diffusion Models)等算法,AI能够根据上下文信息智能填充缺失部分,保持视觉连贯性。

实战案例:使用Stable Diffusion修复老照片

案例背景:一张老照片因年代久远出现局部破损,需修复人物面部缺失区域。

工具与数据准备

  • 工具:Stable Diffusion WebUI(搭配Inpainting功能)、Python 3.8+、OpenCV
  • 数据:破损的老照片(需标注掩膜标记缺失区域)

操作流程

  1. 预处理图像
    使用OpenCV加载图像并生成掩膜(Mask),标记需修复的区域。掩膜为二值图像,白色区域表示待修复部分。

    import cv2
    image = cv2.imread("old_photo.jpg")
    mask = cv2.imread("mask.png", 0)  # 单通道掩膜
    

  2. 配置Stable Diffusion参数
    在Stable Diffusion WebUI中选择“Inpaint”模式,上传图像和掩膜。关键参数:

    • 提示词(Prompt):描述修复内容(如“a man's face, high detail, vintage style”)
    • 去噪强度(Denoising Strength):建议0.7-0.9以平衡生成质量与原图一致性
  3. 生成修复结果
    运行模型后,AI会根据周围像素生成填充内容。多次调整提示词和参数可优化效果。

进阶技巧:基于LaMa的局部修复

LaMa(Large Mask Inpainting)是专为大面积缺失设计的模型,适合修复背景或大块物体。

实现步骤

  • 安装LaMa库:
    pip install lama-cleaner
    

  • 运行修复:
    from lama_cleaner import LamaCleaner
    cleaner = LamaCleaner()
    result = cleaner.inpaint("damaged_image.jpg", "mask.png")
    

注意事项

  • 边缘处理:修复区域边缘需与周围自然过渡,可尝试羽化掩膜边缘。
  • 伦理问题:避免用于伪造敏感内容,遵守法律法规。

效果评估指标

  • PSNR(峰值信噪比):衡量修复区域与原图的像素级差异。
    $$ \text{PSNR} = 10 \log_{10} \left( \frac{\text{MAX}_I^2}{\text{MSE}} \right) $$
  • LPIPS(感知相似度):评估视觉感知一致性,值越低越好。

通过结合工具选择与参数调优,AI图像修复可广泛应用于文物修复、影视后期等领域。

Logo

火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。

更多推荐